
Replacing xt_qtaguid with an upstream
eBPF implementation
Linux Plumbers Android microconference
September, 2017

Lorenzo Colitti <lorenzo@google.com>
Chenbo Feng <fengc@google.com>

mailto:lorenzo@google.com
mailto:fengc@google.com

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Background information

Proprietary + Confidential

What is xt_qtaguid?

● Network traffic monitoring tool on
Android devices

● Replaced the xt_owner module inside
android device kernels

● Counting packet against the correct
app uid.

● Filtering per-app traffic with socket
owner match

Proprietary + Confidential

Xt_qtaguid module

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Problems with current module

○ Totally out of linux kernel tree and not upstreamable.

○ The version of this module varies with kernel version.

○ Stability, maintenance, and soon performance issues.

Goal
● developing a new tool to realize similar function as xt_qtaguid

module with no out-of-tree code

Proprietary + Confidential

● Semantics:

○ Counts packets and bytes on combination of app, app-defined tag, interface

○ Allows assigning 64-bit tag to every socket

■ Socket tags comprised of 32 bits UID (i.e., app) and 32 bits app-defined tag

■ Privileged UIDs may impersonate other UIDs (e.g., download manager billing traffic

to app that requested the download)

● Userspace interface:

○ Apps tag their own sockets using /proc interface

○ System collects data by scraping /proc

Android socket tagging

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Design

Proprietary + Confidential

● Powerful way to apply policy from userspace

● In networking area, it can apply filters on socket, cgroup,

iptables module (xt_bpf), tc-bpf, etc.

● Advantages:

○ Easier to upstream, since no custom code in kernel

○ Much less chance to cause kernel crash

○ Customizable eBPF program design

○ Multiple filter hook points in network stack.

Why use eBPF?

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Android
Native

Kernel

Netd

eBPF CGROUP filter
(Both egress and

ingress)

Load eBPF program/maps
Read data entries
Garbage collection
etc...

Framework/Apps

Send Request
and get stats● Per-cgroup eBPF program to perform accounting

○ Ingress: Transport layer (e.g. tcp_v4_rcv), same as

eBPF socket filter

○ Egress: Network layer (eg. ip_finish_output)

● Stats received are stored in eBPF maps.

● Stats periodically retrieved by privileged process from

eBPF map

● Apps tag sockets by sending fd using binder call to

privileged process

Basic Design

Source: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis non erat sem

Proprietary + Confidential

Following alternatives considered cannot fulfill our needs

xt_ebpf with pinned eBPF object Per-socket eBPF filter tc bpf

● skb->sk usually unavailable on
ingress side

● Only does input packets
● Need to apply program to every

fd individually
● Some sockets don’t have an fd,

so can’t attach program to
them

● Only does output packets

Why cgroup filtering?

How to use Big 3 Ideas:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Use sk_cookie to identify socket in various EBPF maps

○ If empty, cookie initialized by eBPF program when a packet is processed

● Cookies mapped to:

○ Socket IDs (uid | tag) if socket is tagged

● Stats entries are mapped with two struct

○ Key struct contains Socket ID | foreground state | interface

○ Value struct contains tx/rx packets number and tx/rx bytes

● Overall stats are in UidToStatsMap

● Tagged sockets stats are in TagToStatsMap

Data structures

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

Userspace kernel interaction

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

NetD

UidToCounterSetMap

eBPF program

CookieToTagMap

TagToStatsMap

Read tag and uid
information based on
socket cookie

Increment the data count
if there is a tag and uid
pair in the
CookieToTagMap.

Read counter set
information
based on uid

Create and update tag
information

Read out Tag specific data

Insert and delete
uid counter set
pairs

UidToStatsMap

Insert and increment
data count for a
specific uid. No
matter the socket is
tagged or not

Read out uid specific data

Proprietary + Confidential

● Written in assembly like instruction arrays

○ Potentially allow creating eBPF program at run time.

● Loaded into the kernel on netd startup

● Packet information collected:

○ Socket uid

○ Packet type (tcp, udp, other)

○ Packet length

○ rx/tx interface

Kernel Program

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Userspace implementation

Proprietary + Confidential

● Netd is mainly responsible for managing the userspace service

● Init process:

○ Mount cgroup v2

○ Mount eBPF filesystem

● Netd Initialization

○ Create maps, load program into root cgroup

● Netd binder service:

○ Socket tag/untag

○ Periodically retrieve traffic statistics

○ Garbage collection

Userspace Service

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Init process:

○ Mount cgroup v2

○ Mount eBPF filesystem

● Netd startup:

○ map create and pinned to a specific location

○ Load the kernel filter program

○ Attach filter to the cgroup mounted

■ By default, the program is attached to the root cgroup so all processes will

be contained

Userspace Initialization

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Socket tag/untag

● Request for stats

○ Request is passed by binder calls.

○ Netd read through the stats map and form the result

■ Combine result from uidToStatsMap and tagToStatsMap

■ App should not see the network stats of other apps

● Garbage collection

○ Scan for closed socket and clean the cookieToTag tables

○ After system server captured the stats snapshot, clean up the untagged socket stats in

TagtoStatsMap

○ UidToStatsMap will never be cleaned until reboot or app uninstalled.

Userspace runtime services

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Pinned eBPF object will not be destroyed until the pinned file is deleted.

● When netd restart:

○ Scan for the pinned map file

○ Use sock_diag scan for any open sockets

○ Clean up the cookieToTagMap

○ TagToStatsMap will be garbage collected as usual when system server polls stats

Netd crash recovery

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Adding LSM hooks and selinux checks for eBPF operations in progress

● Selinux is responsible for restricting the access to eBPF object and cgroup.

○ Only allow netd to create eBPF maps, update element and load eBPF program

○ Only allow netd to access file under bpf filesystem

○ Only allow netd to access the root directory of cgroup v2

● May allow system server directly read maps to enhance performance

Security Model

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Public APIs: TrafficStats and NetworkStatsManager,
○ System will use eBPF or xt_qtaguid depending on kernel version

● Some apps might be opening /proc/net/xt_qtaguid/... directly
○ No easy way to support this without xt_qtaguid module

■ Can’t just bound mount a file over /proc/net/xt_qtaguid/… as stats are per-UID
○ Disallow direct access as early as possible (e.g., in preview release)

● Some apps might be calling qtaguid_tagSocket, etc. directly
○ Might be able to turn these into these calls to netd

● Future implementation will switch to binder calls for all socket tagging and data retrieving
processes.

App compatibility

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Challenges

Proprietary + Confidential

● Memory management

○ xt_qtaguid can call kmalloc

○ eBPF maps cannot be resized, consume unswappable kernel memory

■ Tagging socket can fail, but not being able to account traffic to UID unacceptable

● Security model not fine-grained

○ Everyone can write to maps and load programs (bad)

○ Only CAP_NET_ADMIN can write to maps, so processes can’t tag own sockets

eBPF Challenges

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Cgroup eBPF program call sites scattered around kernel

○ Needed several fixes to ensure different types of packets were counted [only] once

○ Still can’t count IPv6 SYN+ACKs

○ Not sure how to count IPsec packets yet

■ When applying per-socket policy, add estimated overhead to tag entry?

■ Need to avoid double-counting, deal with IPsec encapsulation, etc.

● Split user/kernel space solution

○ Many moving parts: kernel program, netd, init, …

Implementation Challenges

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

Proprietary + Confidential

● Fixes for accounting correct packets

● New getsockopt SO_COOKIE

● Helper functions to get UID and cookie

● All upstream as of 4.12, backported to android-4.9

● In progress: LSM hooks and selinux checks for eBPF operations

Necessary kernel changes

How to use the basic headline + body:

1. Replace body text by either typing directly
into table boxes or copy and paste
content in from other source

THANK YOU

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Q & A

